Education	Tri-Institutional PhD Program at Cornell University/Weill Cornell Medicine, MedicineSloan Kettering Cancer Center, Rockefeller University, New York, NY, USAPhD in Computational Biology and MedicineAugust 2024 - Medicine	
	University of Toronto , Toronto, ON, Canada Master of Science, Computer Science - <i>fully-funded research Master</i> Supervisor: Dr. Anna Goldenberg Research Areas: Machine Learning, Digital Health, Digital Patholo ries, Computer Vision, Causality, Spatial Biology	September 2022 - June 2024 <i>'s Degree</i> ogy, Precision Medicine, Time Se-
	University of Waterloo , Waterloo, ON, Canada Bachelor of Applied Science, <i>Honours Biomedical Engineering - Co</i> Minor: AI and Computing	September 2017 - June 2022 -op, Graduate with Distinction
Publications	J. Yu *, Z. Wu, A. T. Mayer, A. Trevino and J. Zou. A Multi-Granularity Approach to Similar Search in Multiplexed Immunofluorescence Images. [Proceedings Paper] Proceedings of the 18th M chine Learning in Computational Biology meeting, [10.1101/2023.11.26.568745v1], Seattle, WA, US 2023 (MLCB '2023).	
	J. Yu [*] ⊠, T. Behrouzi [*] , K. Garg [*] , S. Tonekaboni and A. Gol- <i>Change Point Detection for Physiological Data Analysis.</i> [Proceedin Machine Learning for Health Symposium, 10.48550/arXiv.2211.039 (ML4H '2023).	denberg. Dynamic Interpretable ngs Paper] Proceedings of the 3rd 91, New Orleans, LA, USA, 2023
	J. Yu [*] , M. Ali, R. Zhu, P. Edke. and A. Goldenberg. <i>Childhood Mental Health During and Post Pregnancy: A Causal Approach</i> [Pr Workshop: Data science techniques on data for neurodegenerative di ws.org/Vol-3521/paper1.pdf, Zurich, Switzerland, 2023 (IEEE SDS)	d Adversity's Impact on Dynamic cocceedings Paper], IEEE SDS2023 seases and mental disorders, ceur- '2023).
	A. Hussain, Z. Zhang, J. Yu, R. Wei, H. Arshad, J. Lew, C. J. Huizinga. Haustral Rhythmic Motor Patterns of the Human sound. [Journal Article]. American Journal of Physiology-Gastre 10.1152ajpgi.00068.2023, 2023.	Jagan, Y. Wang, JH. Chen and Large Bowel Revealed by Ultra- ointestinal and Liver Physiology,
	H. Abedi, M. Ma, J. Yu , J. He, A. Ansariyan and G. Sha Cabin Monitoring and Vehicle Safety System Using a 4D Imaging 10.1109/JSEN.2023.3270043, IEEE Sensor Journal, 2023.	ker. Deep Learning-Based In- g Radar Sensor [Journal Article],
	H. Abedi, M. Ma, J. Yu , J. He, A. Ansariyan and G. Shaker. On Deep Learning for Radar- Based Passenger Monitoring [Proceedin URSI47032.2022.9887034 IEEE International Symposium on Anten URSI Radio Science, Denver, CO, USA, 2022.	the Use of Machine Learning and gs Paper], 10.1109/AP-S/USNC- mas and Propagation and USNC-
Under Review	R. Zhu, J. Yu, S. Friend, S. M. Goodday, B. Wang, A. Goldenberg, experience: Forecasting symptoms using graph neural networks and review for Machine Learning for Health (ML4H) Symposium, Vance	Towards a personalized pregnancy ad digital health technologies. in ouver, Canada, 2024.
	S. M. Goodday, R. Yang, E. Karlin, J. Tempero, C. Harry, A. B. Goldenberg, M. Francis, D. Karlin, C. Centen, S. Smith and S. erage? Describing the heterogeneity of pregnancy symptoms us. [10.1101/2024.04.26.24306455], 2024.	Brooks, T. Behrouzi, J. Yu , A. Friend. Does anyone fit the aving wearables and mobile apps.,
Abstract	JH. Chen, L. Liu, J. Yu , and J. D. Huizinga. Evaluating stimulus-h ment in chronic constipation using a machine learning approach., Toronto, 2024 (MLHC'2024)	based heart rate variability assess- Machine Learning in Healthcare,
	J. Yu [†] , D. Foster, and S. Pai. <i>Extending Similarity Network-Based</i> (and Deep Learning, Machine Learning in Computational Biology, C	Classifiers to Non-Coding Genome Online, 2021 (MLCB'2021).

^{*}First author

Under Preparation	J. Yu [*] , S. Goodday, A. Goldenberg, and S. Friend. <i>Time Series Analysis of Wearable Data for Understanding Delivery Readiness in Pregnancy.</i>	
	J. Yu [*] , T. Behrouzi [*] , S. Goodday, A. Goldenberg, and S. Friend. Exploring the risks of using wearable data to inform pregnant individuals.	
Invited Talks	Childhood Adversity's Impact on Dynamic Mental Health During and Post Pregnancy: A Causal Approach [Lighting Talk], IEEE SDS2023 Workshop: Data science techniques on data for neurode-generative diseases and mental disorders, Zurich, Switzerland, 2023 (IEEE SDS '2023).	
	Time for Baby: Leveraging Wearables Data to Enhance Personalized Pregnancy Outcomes - Delivery Readiness [Research Talk], Vector Endless Summer School: Health Roundup Seminar, Toronto, Canada, 2023.	
Research Experience	Cornell University/Weill Cornell Medicine (in affiliation with Memorial Sloan Kettering Cancer Center and the Rockefeller University)2024.08-PresentPosition: Graduate Researcher Supervisor: Dr. Christina Leslie• Designing and implementing deep learning models to unravel complex biological processes.	
	 Developing and implementing algorithms to integrate multi-omic data from diverse sources to uncover the mechanisms of gene regulation that play a critical role in cancer development. University of Toronto (in affiliation with the Vector Institute & the Hospital for Sick Children) 2022.05-2024.08 Position: Graduate Researcher Supervisor: Dr. Anna Goldenberg Collaborators: Dr. Stephen Friend, Dr. Sarah Goodday Worked on Dynamic Interpretable Change Point Detection for Physiological Data Analysis as the first author, and working on Time Series Analysis of Wearable Data for Understanding Delivery Readiness in Pregnancy 	
	• Conducted a study on exploring the risks of using wearable data to inform pregnant individuals within the context of ongoing digital health research	
	• Proposed the concept of individualized delivery readiness and developed ML forecasting models.	
	• Defined research problems and objectives for the <i>Better Understanding the Metamorphosis</i> of <i>Pregnancy (BUMP)</i> study by identifying research gaps in existing work.	
	• Designed and implemented a novel dynamic change point detection method to detect pregnancy- related events with better performance and interpretability for physiological data than SOTA methodologies.	
	• Developed interpretable time-series forecasting models for pregnancy due date and delivery readiness prediction.	
	 Worked on Modelling Childhood Adversity's Impact on Dynamic Mental Health During and Post Pregnancy as the first author Investigated and modeled the dynamic relationships between mental health variables during and post-pregnancy using causal frameworks such as the PC algorithm and DAGs with NO TEARS method. 	
	Project manager:Facilitated knowledge-sharing by developing an onboarding Wiki page and organizing journal review sessions, enhancing team productivity.	
	• Managing a team of 6 to work on a wearables data missingness imputation software and discussed with key collaborators, including 4YouandMe, Evidation Health, Oxford University, and MIT.	
	• Participated in the recruitment process for data engineering roles by conducting interviews and assessing candidates to secure top-tier talent for advancing data management and software infrastructure.	
	Enable Medicine (in collaboration with Stanford University) 2023.05-09 Position: Research Scholar Supervisors: Dr. Alexandro Trevino, Dr. James Zou, Zhenqin Wu Worked on <i>A Multi-Granularity Approach to Similarity Search in Multiplexed Immunofluorescence</i>	

Worked on A Multi-Granularity Approach to Similarity Search in Multiplexed Immunofluorescence Images as the first author.

• Developed a similarity search pipeline on CODEX multiplexed tissue images, leveraging advanced self-supervised learning and multimodal models for feature extraction.

- Developed a patient similarity search algorithm that employs an entropy-based aggregation method to enable searching at higher, multi-granular levels.
- Benchmarked various feature generation approaches to handle high-dimensional images and tested them on various vision foundation models such as DinoV2, ResNet and PLIP image encoders.
- Conducted evaluations using datasets from different tissues on both patch-level and patient-level to demonstrate the framework's effectiveness and generalizability.

University of Waterloo (in collaboration with McMaster University) 2021.09-2022.04

Position: Researcher | Supervisor: Dr. Alexander Wong

Collaborators: Dr. Jan Huizinga & Dr.Jihong Chen

Worked on Haustral Rhythmic Motor Patterns of the Human Large Bowel Revealed by Ultrasound.

- Designed and implemented an active contour-based segmentation method that lowered the mean absolute error of colon wall detection by 90% in abdominal ultrasound images.
- Developed a novel algorithm to generate spatiotemporal maps of colon diameter change over time to reveal colon motility patterns.

Ontario Institute for Cancer Research

Position: Computational Biology Research Intern | Supervisor: Dr. Shraddha Pai

Collaborators: Dr. Gary Bader, Dr. Duncan Forster

Worked on Extending Similarity Network-Based Classifiers to Non-Coding Genome and Deep Learning as the first author.

- Developed a deep-learning patient classifier with an accuracy of 88% using graph attention networks to predict clinical outcomes of patients with cancer.
- Conducted research on model explainability and used SHAP values to explain feature importance for patient outcome prediction.

University of Waterloo

Position: Researcher | Supervisor: Dr. George Shaker

Worked on Deep Learning-Based In-Cabin Monitoring and Vehicle Safety System Using a 4D Imaging Radar Sensor.

- Built an ML model with high precision (0.90) and recall (0.95) for in-car occupant detection using 4D MIMO radar.
- Designed an ML data pipeline for multi-label classification with big data, including data preprocessing, model training & testing and performance evaluation.
- Analyzed and benchmarked different neural network architectures, including 3D-CNN, Long Short-term Memory (LSTM) and Temporal Convolution Network

Nuralogix Corporation (in collaboration with University of Toronto) 2021.01-07 Position: Machine Learning Research Intern | Supervisor: Dr. Kang Lee

Worked on Deep Learning-Based Facial Blood Pressure Estimation.

- Designed and developed a 3D-CNN computer vision model with an ensemble learning approach using facial videos; improving blood pressure estimation accuracy by 7%
- Proposed and implemented multiple model explainability methods, including permutation feature importance and saliency map

University of Guelph - Centre for Biodiversity Genomics 2019.01-04, 08-12

Position: Bioinformatics Research Intern | Worked on ML model for taxonomic classification.

- Developed a multi-class ML model for taxonomic classification on nucleotide & amino acid sequences that achieved 96% accuracy
- Performed error analysis and visualized key findings using data visualization tools

Automated Clinical Note Generation from Doctor-Patient Conversations using Large Language Models Winter 2022

Our team developed a top-performing large-language-model (LLM) solution for automating clinical note generation from physician-patient dialogues, thereby demonstrating the potential of LLMs in improving healthcare documentation and communication.

Grad Course Projects

2021.05-08

2020.07-12

	 Exploring Model Compression Techniques for Deep Learning based Image Compression Models Winter 2022 Our team implemented model compression techniques, such as pruning and quantization, for image compression algorithms to mitigate high data transfer and computation costs, and compared the performance of compressed models to their original models. 	
	Analyzing Participant Engagement in Mental Health Studies Through Data Collection Processes Fall 2022 Our team analyzed data collected in a mental health study, utilizing Exploratory Data Analysis, visualizations and statistical testing. Based on the insights gained from this analysis, we gave recom- mendations aimed at enhancing user engagement.	
Grants	2023, 2024: Vector Research Grant – \$4,000 This grant is provided for top-performing graduate students who conduct research in AI at Vector Institute.	
Fellowships & Fundings	2022-2024: University Of Toronto Tuition Fellowship \$10,000 2022-2024: University Of Toronto Top-up Fellowship \$4,000 2022-2023: University of Toronto Fellowship (Arts and Science) – \$10,000 2020: BioTalent Canada Work Placement Program Funding – \$7,500	
Awards & Achievements	 2023: Google CS Research Mentorship Program Recipient 2022: Vector Scholarship in Artificial Intelligence – \$17,500 2022: Ontario Graduate Scholarship – \$15,000 2020, 2021, 2022: Natural Sciences and Engineering Research Council of Canada (NSERC) Undergraduate Student Research Award (USRA) – \$6,500 x 3 2019, 2020: President's Research Award – \$1,500 x 2 2018: President's Scholarship of Distinction – \$2,000 	
Community Involvement	Machine Learning for Health 2024, Reviewer (4 papers)2024.09Machine Learning in Computational Biology 2024, Reviewer (5 papers)2024.07International Conference on AI & Human-Computer Interaction 2024, Reviewer (1 paper)2024.07ICLR 2024 Workshop on Learning from Time Series For Health, Reviewer (2 papers)2023.02International Conference on AI & Human-Computer Interaction 2023, Reviewer (1 paper)2023.02UofT Women in STEM, Advisor2023.02HerCode, Mentor, Instructor2023.02BioTEC Conference, Event Organizer Lead2022-2023UWaterloo Engineering Student Society Resume Critique, Mentor2021.01-03UWaterloo Women in Engineering, Ambassador2017-2022	
Skills	 Programming Languages: Python, MATLAB, R, C, C++, C#, SAS, SQL, JavaScript, Java, HTML/CSS, Excel & VBA Software Development Tools: Git, VS Code, AWS, Jupyter Notebook, Domino MLOps, Confluence, Jira, Docker, Bash Software Libraries: PyTorch, Tensorflow, Keras, TFLearn, OpenCV, NumPy, Pandas, scikit-learn, scikit-image, Matplotlib, Scipy, seaborn Languages: English, Mandarin 	