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Abstract Designing Interpretable Features for Taking Similarity Network-Based
Similarity networks provide a useful framework for multi-modal data integration, suitable I methviom 1fi - I
for applications such as gene function prediction and patient classification'. We previously Patlent DNA et y omes CIﬂSSlflcathn tO Deep Learnlng
developed a supervised learning algorithm which converted heterogeneous patient data Motivation _ _
into the common space of patient similarity networks (PSN) and used these networks as o f e evtending feature desian fo h N . Motivation
input features? (netDx.org). In addition to excellent classification performance and ne area ol researcn IS extending feature aesign 1o thé non-coding genome, or relevance . ey . —
handling missing data, netDx provides interpretability by allowing users to group genes to classification tasks that use epigenetic measures such as DNA methylation, but also ;I;]r;(e)ucuhrri?ttraal%?rzlthrgnfgrlgfl;[g)); I?rellr;nelﬁgr:(nvt/%gerggmt’% ; i(?]oeeds rgg;[jglzecgr?gg ]:Josrergll%gr
into pathway-level features. However, the pathway-based grouping approach is of limited genetic data (e.g. SNPs, PNVS)' Here we fOCUS. on modelll_ng DNA methyla_tlon, which Is trans19erFI)earnin (igé as a starting point for a related c?lassification task). These problems
value for genomic data outside coding regions. Moreover, the current framework has the most commonly used ‘omic data type for brain tumour diagnostics', predicts treatment with netDx wou?d e rosolved b ga%a £ the aldorithim to the deen leamin frapmework
imited scaiability In fhe number of nodes and networks and does not take advantage of [e5|stance mhgllob(I;astomg ; adni whg:hlllsb?ys{regulateddFl)rlmzi\,ome %roups oLpedlatnc brain a fast evolving space in artificigl inteFI)Iigegnce regearch and a cIast) of mod%ls with higﬁ
- ‘seriminabili - - - umours, such as Group 3 and 4 medulloblastoma an ependymomas4. LSl EAAOAN _ _
Ifzlese dISCFImIn.ablhty avallable in the deep learning frameworlf. S g PAEY discriminability’. Here we describe our efforts to adapt a recent graph convolutional
Here, we describe two recent areas of work addressing these Ilimitations. network-based approach for multi-modal data integration into a classifier (BIONIC)z.
In the first, we classify binary survival in PFA ependymomas using tumour DNA Bl Ncobes B literature _
methylomes organized with prior knowledge of brain tissue- and cell-specific expression, uman ] ENCODES. How the algorithm works: .
ot . ! . cerebellum Workflow for GCN-based classifier
transcription factor binding sites and chromatin state. In the second, we extend a recently 1.Pre-BIONIC: Patient  data s
developed framework from Forster et al.3 for multiple network integration based on graph Strategy W I ' LT -
convolutional networks, to classification. Developing an approach to score features for i i eYEiste) 1o Sl el METen,e Ul Paion Clssfor
inter rut bility remains an active area of .researchp ) P Just as we grouped gene-level transcriptomic 4 a Pearson correlation as similarity metric. e crewe (L eednonc
interpretabliity ' measures into pathways ("Background®), here YN e o Optional: To build interpretability, prior e
we group base-level CpG methylation - the 000 S i knowledge of pathway definitions can
unit measured in methylomic assays - Dby - in gene-set o be used to create pathway-level PSNs,
Background vansarition faclor binding sitos, chromatin gy Y simitar to neftbx
: uiatl TF binding sites é fi.ceeuigt . g _ :
Similarity Of dlsease relevance (eg those In developlng ‘.Il=l= = : L' ':'@ tz).OtI‘I]VIOt?aIT:]?r?g BaInOleg.StTglasmFS;l:gg u-|§eeSSt
(e.g. Pearson correlation) Patient SImIIarIty networks (PSN) are networks Where human Cerebellum fOI' pedlatrIC bra|n ENEEE EEEE _} :r --:--% sam |eS are masked durin the tr.ainin
Patient Type A 4 g § - - tu Mmou rS) . m p g g 3 L oot etwors 2 eamand combine
nodes are patients and edges are weighted by pairwise Patient task - - .
Transcriptomic \%%3 | similarity for a data type. Similarity metric is user-defined methylomes -0 _ ' — ._.E — Jeen,| — 8
similarity o (e.g. Pearson correlation for transcriptomic similarity). i a. Each adjacency matrix is put through | e : E—
DNA Methylomic The PSN framework allows building of classifiers that are a graph convolutional layer to generate /' | qo e ‘ o
BmEAHES accurate, generalizable, can integrate heterogenous data, _ ] features for each node in the network. Ser-supenised oss uncion T E T deeN:
Chr:ir;?ltai?i;tate % and handle miSSing data1. Appllcatlon b. Network SpeCIfIC node features are 2) Cross-entropy loss E 8% o ﬁ
o Methods: We predicted binarized survival in summed to create integrated node e ;
PFA-Ependymoma using 569 brain tumour features. e
methylomes* (lllumina 450K). Using netDx, we c. A semi-supervised approach has Overview of multi-modal data integration by
A. Multi-modal input data B. Patient similarity networks C. Feature scores D. Integrated network eva Uate_d a model that gr(_)uped CpG-level (P? been added to BIONIC to incorporate  BIONIC. The red arrow indicates the change made
. (model features) met’ly|atlon Into SeFS reﬂeCt|ng 25 cell typeS —»  netDx labelled data. The loss function uses to the training |.O.SS function to create a semi-
Measures @ Score features % 110 Threshold to from the _develc_)plng human Cer_ebellum5, /67( two components: 1) minimizing the su_ﬁ?erwseq classifier. Adapted from Forster et al.
Clinical| Eszsa® Training (feature selection) select features @ (EEZ[\II_gOgIE;jmg glteg, | 3 Chromatlr;] states mean-squared distance between a WILI permission.
Tl /10 andisorainEssupepsennancerss . network reconstruction (produced from
Transcriptome| & f2Ee: SR gRaE - % - (80:20 train/test split, feature selection >=8/10; i G iy CUT the integrated features§pand all input
e %10/10 ‘ 10 splits). This model was compared to a (252 good, out of 10 networks (unsupervised), 2) cross- 3- Post-BIONIC: The embedding now contains
Methylome|QL SeEE-#eas Tost | baseline lacking that did not use prior 317 poor survivors) 10 train/test splits entropy loss using labelled data (semi- training and test samples. It can be used with
: samples | @ ©°0d prognosis knowledge (single feature for all methylome). b - : - any standard classifier algorithm to classify
P O Poor prognosis \ <% < supervised). This step creates a single
' — Similarity . < 292 929 99 & embedded PSN. This step uses 5-fold test samples (e.g. SVM, MLP).
n %4 ' I
How netDx works. Each data layer (A) is converted to common PSN space (B). Each network is one Preliminary results: Organizing methylomes %_ ' SIS Vs el
feature that goes into the model. Feature selection is used to score predictive features (C), and top- by prior knowledge significantly improves o 0.70 Application
scoring features are combined into a single, integrated patient network (D). Unknown patients (test prognostic prediction (AUPR: 67.5+/- 3.5, = . | i | 10
samples) are classified by relative similarity to known examples (training samples). mean +/- SD: baseline model: 64.2 +/- 2.3: p < g ﬁ | We applle_d_ th_e above algorithm for 4- . - 53. .
5x103, one-sided WMW). Features that % way cla_ssmcatlon of brea_st tumours by ° ., 4, —LEIONC é%:% - .
. predict prognosis are consistent with known & 060 integrating gene expression and DNA T o0 %<
Designing pathway features : : 4 o methylation (N=511 tumours, TCGA®) sampies = < 5
that ma rovide mechanistic T int % dysregl'”atlon In PFA ependymomas ) A R B ] . . ’ 5-fold CV L ; o
tha yp ranscriptome  One network | using 90:10 train/test split and 5-fold & g
insight smsmsmsmmes  per gene set including CXOrf67 mutation, methylation in o CXOrf67 mutation e E
S L SiEeesEamnas =5 H3K9me3 sites, marker genes for ependymal & H3KIme3 IO validation. The model Bsal HERZ Luma Lump  °°
Top: Transcrlptjomlc measu;‘]es cells of choroid plexus and for multiple = Epengmilig%l:zx%fs demonstrated an average F1-score of Actual Class
can be grouped into sets that e interneuron cl _ Interneurons (various 0.88 across all 4 classes on the test set Application to 4-way breast tumour classification
{ ted path { terneuron classes ( )
(r:erg;?ger;th\(/:vuara-leevelpfaeatnvraeyss O - | (N=52 samples, test accuracy 0.88). by integrating transcriptome and DNA methylome
p. y N Mitosis and e P:;Z\;Zy::r?erz Application to binary survival prediction (left). Results (right).
Bottom: Example of a binary checkpoints in PFA ependymomas. Top: Predictor .1 . . o A
breast tumour classifier? (N=384 = Q design, integrates CXOrf67 mutation and Interpretablllty? A work of active research is developing interpretability in this
Sister

tumours) using pathway features. DNA synthesis

Predictive pathway themes are @
consistent with Known (%)

dysregulated signaling pathways.

Conclusion & Future Directions  cihyiomes. Bottom: Performance of models framework*, similar to feature selection in the current netDx method. Current limitations
with  (L-R) mutation only; methylome, Include:

Fnauiglt'igi;eret?;ﬁgmz vl?/i&’:ﬁeglr?oer ggwggge?; Perturbation-based approaches may not scale to designs with thousands of input
features (e.g. pathway-based features)
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Improve survival prediction in PFA-EP and
identify features reflecting tumour biology.
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Current Directions: We are validating this To our knowledge, gradient-based feature importance scores (e.g. saliency maps) are not
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