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Abstract
Similarity networks provide a useful framework for multi-modal data integration, suitable
for applications such as gene function prediction and patient classification1. We previously
developed a supervised learning algorithm which converted heterogeneous patient data
into the common space of patient similarity networks (PSN) and used these networks as
input features2 (netDx.org). In addition to excellent classification performance and
handling missing data, netDx provides interpretability by allowing users to group genes
into pathway-level features. However, the pathway-based grouping approach is of limited
value for genomic data outside coding regions. Moreover, the current framework has
limited scalability in the number of nodes and networks and does not take advantage of
improved discriminability available in the deep learning framework.
Here, we describe two recent areas of work addressing these limitations.
In the first, we classify binary survival in PFA ependymomas using tumour DNA
methylomes organized with prior knowledge of brain tissue- and cell-specific expression,
transcription factor binding sites and chromatin state. In the second, we extend a recently
developed framework from Forster et al.3 for multiple network integration based on graph
convolutional networks, to classification. Developing an approach to score features for
interpretability remains an active area of research.

Background

Designing Interpretable Features for
Patient DNA methylomes

Taking Similarity Network-Based
Classification to Deep Learning
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Motivation
The current algorithm for netDx is limited in tuneability, does not use GPUs for high-
throughput training, and lacks a framework whereby trained models can be used for
transfer learning (i.e. as a starting point for a related classification task). These problems
with netDx would be resolved by adapting the algorithm to the deep learning framework,
a fast evolving space in artificial intelligence research and a class of models with high
discriminability1. Here we describe our efforts to adapt a recent graph convolutional
network-based approach for multi-modal data integration into a classifier (BIONIC)2.

Motivation
One area of research is extending feature design to the non-coding genome, of relevance
to classification tasks that use epigenetic measures such as DNA methylation, but also
genetic data (e.g. SNPs, CNVs). Here we focus on modelling DNA methylation, which is
the most commonly used ‘omic data type for brain tumour diagnostics1, predicts treatment
resistance in glioblastoma2, and which is dysregulated in some groups of pediatric brain
tumours, such as Group 3 and 4 medulloblastoma and PFA ependymoma3,4.

Strategy
Just as we grouped gene-level transcriptomic
measures into pathways ("Background"), here
we group base-level CpG methylation - the
unit measured in methylomic assays - by
transcription factor binding sites, chromatin
states, and marker genes for cell populations
of disease relevance (e.g. those in developing
human cerebellum for pediatric brain
tumours).

How the algorithm works:
1.Pre-BIONIC: Patient data is
converted into similarity networks using
Pearson correlation as similarity metric.
Optional: To build interpretability, prior
knowledge of pathway definitions can
be used to create pathway-level PSNs,
similar to netDx.
2. Modified BIONIC: This step uses
both training and test samples. Test
samples are masked during the training
task.
a. Each adjacency matrix is put through
a graph convolutional layer to generate
features for each node in the network.
b. Network specific node features are
summed to create integrated node
features.
c. A semi-supervised approach has
been added to BIONIC to incorporate
labelled data. The loss function uses
two components: 1) minimizing the
mean-squared distance between a
network reconstruction (produced from
the integrated features) and all input
networks (unsupervised), 2) cross-
entropy loss using labelled data (semi-
supervised). This step creates a single
embedded PSN. This step uses 5-fold
cross validation.

Application
We applied the above algorithm for 4-
way classification of breast tumours by
integrating gene expression and DNA
methylation (N=511 tumours, TCGA³)
using 90:10 train/test split and 5-fold
cross validation. The model
demonstrated an average F1-score of
0.88 across all 4 classes on the test set
(N=52 samples, test accuracy 0.88).

Interpretability? A work of active research is developing interpretability in this
framework4, similar to feature selection in the current netDx method. Current limitations
include:
Perturbation-based approaches may not scale to designs with thousands of input
features (e.g. pathway-based features)
To our knowledge, gradient-based feature importance scores (e.g. saliency maps) are not
able to show the network-based importance; instead, they only provide information about
the importance of each individual node/edge feature.
Preliminary exploration of attention coefficients and integration scaling factors suggests
that these are uninformative to discriminate between network-based features.
References: 1. LeCun Y, Bengio Y, Hinton G. (2015). Nature. pp 436-444. 2. Forster DT, Boone C, Bader GD, Wang B. (2021).
bioRxiv 3. TCGA (2012). Nature. 490. 4. Azodi CB, Tang J, Shiu S-H. (2020) TiGs 36.
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Workflow for GCN-based classifier

Overview of multi-modal data integration by
BIONIC. The red arrow indicates the change made
to the training loss function to create a semi-
supervised classifier. Adapted from Forster et al.
with permission.

Application to 4-way breast tumour classification
by integrating transcriptome and DNA methylome
(left). Results (right).

3. Post-BIONIC: The embedding now contains
training and test samples. It can be used with
any standard classifier algorithm to classify
test samples (e.g. SVM, MLP).

Application
Methods: We predicted binarized survival in
PFA-Ependymoma using 569 brain tumour
methylomes4 (Illumina 450K). Using netDx, we
evaluated a model that grouped CpG-level
methylation into sets reflecting 25 cell types
from the developing human cerebellum5,
EZH2 binding sites, 3 chromatin states
(ENCODE), and brain super enhancers6
(80:20 train/test split, feature selection >=8/10;
10 splits). This model was compared to a
baseline lacking that did not use prior
knowledge (single feature for all methylome).

Preliminary results: Organizing methylomes
by prior knowledge significantly improves
prognostic prediction (AUPR: 67.5+/- 3.5,
mean +/- SD; baseline model: 64.2 +/- 2.3; p <
5x10-3, one-sided WMW). Features that
predict prognosis are consistent with known
dysregulation in PFA ependymomas4,
including CXOrf67 mutation, methylation in
H3K9me3 sites, marker genes for ependymal
cells of choroid plexus and for multiple
interneuron classes.

Conclusion & Future Directions
Interim Conclusion: Prior knowledge can
improve survival prediction in PFA-EP and
identify features reflecting tumour biology.
Current Directions: We are validating this
finding in an independent dataset and
extending this approach to Group 3/4
medulloblastoma, pediatric hindbrain tumours
with uncharacterized epigenetic components.

Application to binary survival prediction
in PFA ependymomas. Top: Predictor
design, integrates CXOrf67 mutation and
methylomes. Bottom: Performance of models
with (L-R) mutation only; methylome,
baseline; mutation + baseline methylome;
mutation + methylome with prior knowledge.

How netDx works. Each data layer (A) is converted to common PSN space (B). Each network is one
feature that goes into the model. Feature selection is used to score predictive features (C), and top-
scoring features are combined into a single, integrated patient network (D). Unknown patients (test
samples) are classified by relative similarity to known examples (training samples).

Designing pathway features
that may provide mechanistic
insight.
Top: Transcriptomic measures
can be grouped into sets that
represent curated pathways to
create pathway-level features.
Bottom: Example of a binary
breast tumour classifier2 (N=384
tumours) using pathway features.
Predictive pathway themes are
consistent with known
dysregulated signaling pathways.

Patient similarity networks (PSN) are networks where
nodes are patients and edges are weighted by pairwise
similarity for a data type. Similarity metric is user-defined
(e.g. Pearson correlation for transcriptomic similarity).
The PSN framework allows building of classifiers that are
accurate, generalizable, can integrate heterogenous data,
and handle missing data1.

Clinical

Transcriptome

7/10

5/10

10/10

Score features
(feature selection)Training

samples

Test
samples

A. Multi-modal input data B. Patient similarity networks
(model features)

C. Feature scores

Threshold to
select features

D. Integrated network

P
at
ie
nt
s

Measures

Good prognosis
Poor prognosis
Similarity

?

Methylome

References:
1. Pai S and GD Bader (2018). J Mol Biol.
430.
2. Pai S, Hui S, Isserlin R, Shah MA, Kaka H
and GD Bader (2019). Mol Sys Biol.
3. Forster D, Boone C, Bader GD and B
Wang. (2021). bioRxiv preprint.


