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Summary1

Similarity networks provide a useful framework for multi-modal data integration, suitable for applica-2

tions such as gene function prediction and patient classification (Wang et al. [2014], Pai and Bader3

[2018]). We previously developed a supervised learning algorithm which converted heterogeneous4

patient data into the common space of patient similarity networks (PSN) and used these networks5

as input features (Pai et al. [2019]; netDx.org). In addition to excellent classification performance6

and handling missing data, netDx provides interpretability by allowing users to group genes into7

pathway-level features. However, the pathway-based grouping approach is of limited value for8

genomic data outside coding regions. Moreover, the current framework has limited scalability in the9

number of nodes and networks and does not take advantage of improved discriminability available in10

the deep learning framework. Here, we describe two recent areas of work addressing these limitations.11

In the first, we classify binary survival in PFA ependymomas using DNA methylomes organized12

using prior knowledge of brain tissue- and cell-specific expression, transcription factor binding sites13

and chromatin state. In the second, we extend a recently developed framework from Forster et al.14

[2021] for multiple network integration based on graph convolutional networks, to classification.15

Developing an approach to score features for interpretability remains an active area of research.16

Interpretable Epigenetic Features17

One area of work is to use prior knowledge of tissue- and cell-specific genome regulation to design18

interpretable features using non-coding genomic measures. We created a classifier that predicted19

binarized survival in Posterior Fossa A (PFA) ependymomas using patient DNA methylomes. PFA20

ependymomas are a subtype of a common pediatric neuroepithelial malignant tumour with an21

uncharacterized epigenetic component. Identifying cell types and epigenetic processes that predict22

prognosis in this cancer may lead to the development of actionable molecular therapies. Using23

processed DNA methylomes from Pajtler et al. [2018], we used netDx to classify patients as having24

good or poor prognosis (N=569 tumours, Illumina 450K microarrays). We compared performance25

of a basic model treating the entire methylome as single feature, to a "regulation-aware" design26

where base-level methylation was grouped into sets reflecting marker genes for individual cell types27

in the developing human cerebellum, binding sites for epigenetic regulators, and chromatin states28
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Figure 1: A. Interpretable epigenetic features: Conceptual schematic. B. Performance
for binary survival prediction in PFA Ependymoma using DNA methylomes without (left)
and with feature design reflecting brain genome regulation (right) (N=569; mean of 10
splits, p-value from one-sided WMW test). Pullout shows consistently high-scoring features.
C. Graph convolutional network-based classifier: Confusion matrix for 4-way breast tumour
classification by integrating gene expression and DNA methylation (N=511 tumours total; 52 in test
set; 2 input networks).

in astrocytes and neural stem cells (Aldinger et al. [2021], ENCODE Project Consortium et al.29

[2020])(33 input networks). Samples were split 80:20 into train and test partitions, and training30

samples were used to score features out of 10. Features scoring 8 or higher were used to classify31

test samples. This process was repeated over 10 random train/test splits and model performance32

was measured (Fig. 1B). Features were defined as being consistently predictive if they scored 8 or33

higher in >= 70% of the train/test splits. We found that the predictor design aware of tissue-specific34

regulation significantly outperformed the model without this prior knowledge (Fig. 3B, median35

AUPR=0.67 for regulation-aware, AUPR=0.64 for other; p < 4 × 10−3, one-sided WMW test).36

Features passing selection capture affected cell types and the nature of chromatin dysregulation in37

PFA ependymoma, including ependymal cells from the developing human cerebellum and repressive38

chromatin state (H3K9me3 methylation) (Michealraj et al. [2020]). They also identify cell types not39

previously implicated in ependymoma, including interneurons of the molecular layer and unipolar40

brush cells, and excitatory cerebellar interneurons. Future work involves extending this strategy to41

other brain tumours to identify general principles in feature design for the non-coding genome.42

Extension to deep learning43

For improved scalability and discriminability, we are developing a classifier algorithm by extending a44

recently described approach for integrating multiple similarity networks using graph convolutional45

networks (GCN) (Forster et al. [2021]). BIONIC first encodes each user-input network separately46

using a GCN, then integrates these learned features. The integrated features can then be used for47

downstream tasks such as classification or clustering. To optimize its weights, BIONIC maps the48

integrated features back to the original input network adjacency matrices and minimizes the difference49

between them in an unsupervised manner. We converted this unsupervised algorithm to a classifier50

by adding a second cross-entropy term to the existing loss function and by providing the resulting51

embedding to a classifier, such as a support vector machine. Using this system, we classified breast52

tumours into one of four molecular subtypes by integrating gene expression and DNA methylation53

data (N=511 patients, 90:10 train/test split, 5-fold cross-validation) (TCGA Network [2012]). The54

model demonstrated an average F1-score of 0.88 across all 4 classes on the test set (Fig. 1C, N=5255

samples; test accuracy=0.88).56

A major remaining challenge is to identify a strategy for feature scoring, which is the basis for57

interpretability in our model. Explainable AI approaches such as LIME and SHAP are computationally58

infeasible for predictor designs with thousands of input features (such as pathway-based design)59

(Lundberg and Lee [2017], Ribeiro et al. [2016]). Moreover, saliency maps are not immediately60
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adaptable to our design of integrating across multiple GCNs for node classification. This problem61

remains an area of active research.62
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