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Abstract—In this article, we use a multiple-input–multiple-
output (MIMO) radar for in-vehicle passenger detection.
We propose a 2-D convolutional neural network-long short-
term memory (CNN-LSTM) to accurately detect, count, and
classify passengers inside five-seater vehicles. Our deep
learning model first extracts the feature using a CNN model,
and then, a series of frames will be delivered to a time
series model (LSTM) to predict new scenarios. In addition,
we provide the outcomes of various deep learning mod-
els and show that temporal deep learning models perform
better in our radar datasets. Furthermore, we provide reli-
able session-dependent datasets collected from different car
models with various passengers (including infants/children
and adults). The results show that our proposed 2-D CNN-
LSTM model can detect unattended infants/children in vehi-
cles with more than 95% accuracy, count passengers and
identify their occupied seats with an accuracy of 89%, and
classify passengers with more than 74% accuracy. Since
our model is evaluated in a new car with new passengers,
it ensures the generality of our proposed method to be
deployed in any five-seater vehicle.

Index Terms— Contactless passenger monitoring, in-cabin
sensing, multiple-input–multiple-output radar (MIMO), pas-
senger classification and counting.
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I. INTRODUCTION

IN THE last decade, there has been significant technological
advancement in modern vehicles, such as adaptive cruise

control, hands-free highway driving, and other advanced driver
assistance systems (ADASs). There is a growing need for
in-cabin monitoring systems for infant/pet presence detection
to prevent hot car death, enhance seat belt reminders, and alert
emergency services in the event of a crash that can report how
many passengers are in the vehicle [1].

Accordingly, in the European New Car Assessment Pro-
gramme (EuroNCAP) 2025 roadmap, child presence detection
has been added as a safety requirement [2]. In addition,
a rear occupant alert system in cars is required in USA [3].
Therefore, it is clear that passenger occupancy detection in
vehicles has become increasingly important.

Various in-vehicle occupancy detection solutions already
exist, such as the pressure sensor [4], [5], capacitive sensors
[6], [7], and carbon dioxide sensors [8]. However, the high
false alarm rate is the major issue these technologies suffer
from [9]. While vision-based systems could be used for
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in-cabin occupancy monitoring [10], [11], [12], [13], they are
sensitive to illumination and invade occupants’ privacy. Note
that in automotive industries, cameras are mainly being used
to monitor the surroundings of the car [14].

Radar-based systems, on the other hand, have recently been
introduced and integrated into automotive safety technologies
[15], [16], [17], [18], [19], [20], [21], [22], [23]. Typical appli-
cations tend to be applied to control passenger-side airbags,
safety belts, warning devices, and commuter transport logistics
[1]. Unlike vision-based sensors, radar-based sensors offer a
solution that is robust to lighting conditions and preserves
privacy [24]. Furthermore, millimeter-wave (mm-wave) radars
have small form factors, resulting from integrated silicon and
antenna-in package, which can be easily mounted [25].

Radar-based human detection facilitates people counting
and density estimation [26], [27], [28], [29], [30], [31].
For example, in [31], a people counting method based on
bi-motion-model framework was proposed. Features, such as
activation index, connected regions, and energy of frames,
were extracted and fed to support vector machines (SVM)
to classify people’s motion states. CNN was then used to
count the number of people in an indoor environment when
people were standing far away from each other, and radar
was installed at a height of 2.2 m. In [28], preprocessing
pipelines were proposed to prepare range–amplitude signals
for a deep learning model. An unsupervised pretraining pro-
cess and a defined loss function were proposed to stabilize
network convergence for indoor people counting. Most cur-
rently available people counting methods using radar sensors
have been applied in a large environment where a sensor was
installed on a stand with a height of more than 2 m and tested
with people relatively far from each other (compared with
an in-vehicle environment). In addition, these methods only
estimated the number of people, while the locations of people
were unknown. In summary, common techniques that we use
today for estimating the number of people in a given large
area using radars are often inaccurate and require very com-
plex signal processing methods leading to high computational
costs.

Currently, the radar systems used inside vehicles are mainly
centered on detecting the presence or absence of a living body
to save children and pets left in vehicles to prevent death in
extremely hot or cold weather [32]. In [33], a sensor system
based on the electromagnetic coupling between a transmitter
and a receiver patch antenna was developed for in-vehicle
occupancy detection. In addition to a high false alarm rate,
another limitation of this system is that it just detects one
seat, while various sensors are required to monitor all occupied
seats and the number of passengers. Most of the available
techniques are based on the micro-Doppler effects created
due to the breathing cycles of an alive subject inside a car
[32] without considering the occupied seats and the number of
passengers. For example, in [34], a seat-occupancy detection
system based on a pulsed coherent radar was present based
on breathing cycles. The breathing rate was also estimated
from the amplitude peaks of the signals. In our previous work
[32], we proposed a presence or absence detection algorithm
to detect an unattended child or pet inside a car. The primary
purpose was to propose a fast, easy-to-implement solution to

prevent hot car death. However, the number of passengers and
their occupied seats was not obtained. This issue refers to
multitarget detection and positioning via radar inside vehicles.
To detect passengers inside a vehicle, a passenger’s vital
signs were quantified [19]. In addition, in [23], multipas-
senger occupancy detection inside a vehicle was performed
using a single-channel frequency modulated continuous wave
(FMCW) radar. The physiological characteristics acquired
from the breathing and heartbeat of the radar signal were
analyzed in a time–frequency spectrum to obtain features for
multipassenger occupancy detection [23].

However, detection approaches based on the Doppler effects
produce false alarms with other moving objects. Not to
mention that detection based on the breathing rate would be
challenging in the presence of multiple people inside a car,
especially when passengers move their bodies, such as hands
or torsos. Moreover, these studies were primarily focused on
sensing a single passenger or two. In contrast, multiple-people
counting, namely, how many people are present as well as their
location, is crucial information [24].

Instead of relying on micro-Doppler, range and angle infor-
mation of the car environment or passenger point cloud were
used for in-cabin occupancy detection in [9], [15], [17], [18],
[35], [36], [37], and [38]. In [35], a 77-GHz mm-wave radar-
based rear occupant detection system was proposed with the
main focus on detecting forgotten children in a vehicle’s
rear seats. Two-dimensional fast Fourier transform (FFT) was
applied to build a two-dimensional heat map. Then, a constant
false alarm detection (CFAR) algorithm was used for object
detection, and thus, a 2-D cloud points image was obtained
to identify an occupied versus empty car. Experiments were
performed in a room (to mimic the rear-car seat) to detect a
maximum of three passengers. This experimental setup was
flawed that there was a huge space between three seats,
while passengers sat at almost zero distance in the second
or third row with three seats. In [38], 2-D imaging was
obtained based on digital beamforming using a multiple-input–
multiple-output (MIMO) FMCW radar. A logistic regression
presence–absence detection method was used to count the
number of passengers and identify the occupied seat in a
real car. However, there was no reported accuracy in counting
and localization, and the number of passengers occupying a
car was only two. A 2-D point cloud was generated to count
passengers in a four-seater car with a 77-GHz MIMO FMCW
radar. Although these methods were not based on the micro-
Doppler, they rely on the point cloud of passengers inside
a vehicle while windowing the results according to the car
seat. The windowing and point cloud methods have several
limitations, such as scalability and accuracy. For instance,
since these methods were based on the distance of each
seat to the radar, meaning that the relative distance must be
measured for every car. Moreover, the number of detected
points significantly varies passenger by passenger (depending
on the size, type, gender, weight, and so on). For instance,
if a passenger moves more than the other, his/her motion
will be the dominant signal so that other passengers will be
concealed. Therefore, with the point cloud and windowing
method, we could not obtain a generalized model to be sued in
any car.
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In [9], we showed that a machine learning algorithm is
a promising solution to distinguish occupants with a zero
distance and count the number of occupants. Although a good
result was obtained for passenger counting and localization,
the datasets were obtained from only one car. All collected
samples, collected from one car, were combined, shuffled,
and then divided into train, validation, and test sets (k-fold
method [39]) to evaluate the system performance. Although
this approach could provide very high accuracy, the evaluation
method is not trustable for a completely new scenario, espe-
cially in a new car. Part of the reason is that the radar frame
rate is high; thus, mixing all samples and taking some of them
for the test set would not ensure that our samples are com-
pletely unseen. Generally, in the case of radar-based datasets
for machine learning/deep learning models, the evaluation
method plays a crucial part. We believe that the appropriate
evaluation method is to use a separate sample of recorded data
for the test set (i.e., session independent) to report a model
performance reliably. This ensures the generality of machine
learning applicability in radar sensors. In addition to the issues
mentioned above, in previous studies, there was no report on
identifying the type of occupant in each seat (adult versus
child) using radar sensors.

In this article, we aim to address four identified and major
challenges in the field of radar-based in-cabin sensing to reach:
1) a good and large and reliable dataset comprising different
cars and various scenarios with different passengers, including
real infants/children, instead of a phantom mimicking their
chest motion; 2) a proper method of model performance
analysis; 3) occupancy-type classification (adult versus child);
and 4) a generalized method to be working in every five-seater
car.

To propose a more generalized model that could be used
for new cases, we collected data from a wide range of scenar-
ios in four cars occupied by different passengers (including
infants/children and adults) over several months. To create
session-independent datasets, we trained our model based on
the samples collected from the first three cars and evaluated
the model based on the datasets collected from the fourth car.
Classical machine learning methods, such as SVM, performed
poorly in predicting new scenarios in the test set. This is
because SVM is unable to extract the necessary features
and handle large and complicated datasets [40]. However,
we developed a deep learning model coupled with radar
signal processing for: 1) occupancy counting and localization
dedicated for each seat, whether occupied or not and counts
passengers (location and the total number of passengers);
2) classification differentiates between two kinds of occupants:
an adult and a child; and 3) lock car enables an alarm
when a single passenger is left alone in a locked vehicle.
We analyzed different deep learning models and compared
the performance of the models. Our results demonstrated
that time series deep learning algorithms perform better in
radar-based in-vehicle occupancy detection. Based on the
results, we proposed a temporal convolution network based
on 2-D convolutional neural network-long short-term memory
(2-D CNN-LSTM) algorithm that is trained based on samples
over time. Our proposed model accurately detects passengers,
identifies occupied seats, counts the number of passengers,

and classifies them. Therefore, in this article, we address four
main challenges in previous works for in-vehicle occupancy
detection and provide a generalized algorithm for passenger
monitoring in five-seat cars. Our main contributions are given
as follows.

1) Deep learning models for in-cabin sensing trained and
tested on a huge dataset captured from several different
cars occupied by different people.

2) Deep learning-based occupancy counting and localiza-
tion based on data from adults and children/infants of
different sizes and ages.

3) Deep learning-based occupancy type identification
trained and tested based on actual children and infants
at different ages.

4) Deep learning-based occupancy presence/absence detec-
tion with 100% accuracy.

II. METHODOLOGY

We have been using mm-wave radars to perform the sensing
functionalities in various applications [41], [42], [43], [44],
[45], [46], [47], [48], [49]. Many of those are available
commercially off-the-shelf, such as the ones from Analog
Devices [50], Infineon [51], Texas Instruments [52], NXP [53],
and Vayyar [54]. As in our past works [9], we chose an MIMO
radar, based on its antenna configuration, since it could provide
azimuth information in addition to elevation information of the
car environment as well as the range of passengers. It should
be mentioned that all the results provided in this article are
radar-agnostic. In an MIMO radar, for each transmitting (Tx)
antenna, there are multiple receiving (Rx) antennas to record
the received signals leading to increased angular resolution
[9]. Due to the geometry of the radar sensor antennas, we can
generate a 3-D representation (range, azimuth, and elevation)
by measuring the strength of the reflected signal from an in-car
environment. Since the radar we have been using transmits
radio frequency (RF) signals continuously, it provides the
micro-Doppler, leading to a 4-D imaging system.

A. RF Image Construction
Depending on the antenna array geometry, the number of

elements, and the application, various methods could be used
to compute the range, azimuth, and elevation information of
the environment (referred to as the raw radar images in this
article). In our work, to generate raw radar images, we used
a Capon beamformer [9], [45] and delay and sum (DAS)
imaging method [55]. More details of the Capon beamformer
can be found in our previous works [9]. Since all the
RF images were constructed based on DAS in this article,
we provide more details on the DAS imaging method in this
section. Having the frequency (a series of frequencies with
a frequency step of 1 f ) and spatial samples of reflected
signals from a car environment, a 3-D image of the car
could be constructed. A transceiver transmits a wideband RF
signal and collects the return signal over a rectangular planar
aperture (L zmin, Lzmax, Lymin, Lymax). The return signal at the
receiver is then coherently processed to construct a 3-D image
of the environment. Under the point target model, which
ignores the multiple scattering effects, the received signal can
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be written as [55]

Es
(
rrm, rtm, kp

)
=

∫
G(rrm, r, kn)G (r, rtm, kn) σ (r) dr (1)

where Es (rrm, rt , kn) is the received scattered field at the
mth receiver location due to the illumination of the nth trans-
mitter, σ is the reflectivity of the target, rrn , rtm , and r are
the position vectors of the nth transmitter, the mth receiver,
and targets, i.e., rtm = (xtm, ytm, ztm), rrn = (xrn, yrn, zrn),
and r = (x, y, z), kp is the free-space wavenumber of the
pth operating frequency, and G(rrm, r, kp) and G

(
r, rtn, kp

)
are the free-space Green’s functions that relate the wave
propagation process from the transmitter to the target and from
the target to the receiver.

Then, the in-cabin image can be reconstructed through the
adjoint operation [55]

I (r)

=

∫ kmax

kmin

dkn

∫ L zmax

L zmin

∫ L ymax

L ymin

drrm Es
(
rrm, rtm, kp

)
G∗

(
rrm, r, kp

)
G∗

(
r, rtn, kp

)
(2)

where subscript ∗ represents complex conjugation.
From the concept of time reversal imaging, the complex

conjugation in the frequency domain is equivalent to the
time reversal in the time domain. The backpropagation of the
time-reversed field will focus on the target. In the above equa-
tion, the inner two integrands correspond to the beamforming
over the cross range, and the outer integrand is the coherent
summation over all the operating frequencies.

Since the target (a passenger) is in the far field, this
then leads to an approximate expression for Green’s function
as [55]

G
(
r, rtn, kp

)
=

e− jkprtn

4πrtn
, G

(
rrm, r, kp

)
=

e− jkprrm

4πrrm
. (3)

The value of each voxel is calculated by compensating
for the travel time of each signal to the voxel location and
summing them.

B. Data Collection
Our dataset was recorded with a commercially available

MIMO radar system [54] with the parameters listed in Table I.
For each Tx antenna, there are 20 Rx antennas for collecting
and recording the received RF signals. Each Rx antenna and
its associated Tx antenna serve as an antenna pair. Fig. 1
shows the experimental setup, while the car was occupied by
five passengers. All experiments were carried out in stationary
cars, while the engine and car air conditioner were on. Since
the primary purpose of this work was to showcase the radar
capability in occupant counting and localization, identifying
occupied seats, and recognizing the type of occupants, the
impact of vibration and jarks on our proposed methods was
not analyzed. These analyses would be our future work.

In total, 780 scenarios with a variety of seating situations,
occupancy types, and occupancy numbers, with each lasting
roughly 30 s, were recorded with a radar frame rate of 5. From
each frame, a 3-D matrix of shape 29 × 29 × 24 (X samples,

Fig. 1. Photograph of a vehicle occupied by five passengers.

TABLE I
CONFIGURATION AND THE RADAR PARAMETERS

Y samples, and range samples) was generated, containing
information about the range, angles, and amplitude of reflected
signals. In contrast to previous works [9], where only one car
was used, this dataset is collected in four different cars. Due
to the high degree of similarity among frames from the same
recording session, care was taken to ensure that frames from a
particular session ended up in either the test set or the train set
to prevent overfitting. Unlike previous works in that dolls were
designed to mimic infants, one of the distinctive advantages
of our datasets is that we included infants and children of
different ages in our data collection campaign. Fig. 2 shows
the occupant type distribution of our datasets. Note that Fig. 3
shows the seat nomenclature used in this article. As illustrated,
except for the driver seats, for the other four seats, the number
of samples collected from children is more than from adults
because our main purpose was to detect children for safety
concerns. In addition, if our system detects children accurately,
it could detect adults easier since children (especially infants)
usually sleep in the car, which might lead to missed detection.

C. Preprocessing
Each raw radar image, denoted as Ô(x, y, z), is a com-

plex 3-D matrix. The image values represent the reflective
properties of the targets in space o(x, y, z), calculated on
a grid of 3-D coordinates. The absolute value of Ô(x, y, z),
|Ô(x, y, z)|, represents the reflected power, which is related
to the radar cross section (RCS) and the range of the targets.

Since transmitters and receivers are almost collocated in
most commercially available MIMO radars, there is a strong
leakage between them, dominating other reflected signals.
Fig. 4(a)–(c) represents X -R, Y -R, and X -Y samples of the
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Fig. 2. Visualization of occupant-type distribution of the datasets
collected for this study. ADT: adult. CHI: children. NONE: empty cars.

Fig. 3. Inside the car and the seat nomenclature.

case when an infant was in the rear middle seat (seat 4),
respectively. As seen, there is a strong line in close range
(shown by a red rectangle) to the radar that dominates other
signals, and the signals coming from an infant are concealed.
This is also visible in a 3-D representation of the same
scenario in Fig. 5(a). As seen, the raw radar image is noisy,
and the passenger position is not visible. This is because the
leakage between transmitters to receivers and the reflections
from static objects (stationary clutter) in the car is dominant.
For example, the metallic doors and the ceiling are more
reflective (higher RCS) compared with the reflection coming
from the passenger.

To clean the signal and remove the effects of the static
objects, clutter removal and a mutual coupling reduction
algorithm are required.

One of the most common clutter removal methods is to
compute the average value of the signal of each range bin and
subtract it from the aggregated signals in each frame [45].
Another method of clutter removal is background subtraction,
where the passive clutter is removed by subtracting the image
obtained from a completely vacant vehicle, both in terms of
passengers and cargo, of the same model [55]. This method
clearly suffers from poor scalability.

In this article, to mitigate the reflections from the stationary
clutter and remove the leakage, we propose a derivative-based
method. We add another variable to our 3-D images (variation

Fig. 4. Two-dimensional visualization of a normalized radar image
before removing leakage between transmitters and receivers when seat
4 was occupied by an infant representation of (a) X-R samples and
(b) Y-R samples.

over time), which could be interpreted as velocity. To remove
the stationary signals, we apply derivatives on the raw radar
image over two raw radar images with M frames interval,
which is written as

Ô = I + j Q (4)

dÔ
dt

=
Ôi − Ôi−M

ti − ti−M
= I ′

+ j Q′ (5)

Z =

√
I ′2 + Q′2 (6)

where I and Q are the real and imaginary parts of the
complex value of Ô , (dÔ/dt) respectively, Z is the derivative
function, and Z is the amplitude of the output of the derivative
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Fig. 5. Three-dimensional visualization of (a) raw radar image and
processed radar image, (b) seat 4 was occupied by an infant, and
(c) seat 1 was occupied by an adult. The color bar represents signal
intensity.

function, representing the heatmap of the car environment
(radar image). The intensity of each pixel denotes the reflected
power received from each target in the car at that point [9].
Fig. 5(b) shows the processed radar image over M = 3 inter-
vals. Compared with Fig. 5(a), Fig. 5(b) is cleaner and more
interpretable. Moreover, Fig. 5(c) shows the case when seat 1
(the driver seat) was occupied by an adult. As seen, although
we can count only one passenger for both cases, visually, there
is no distinguishable factor that could be used to differentiate
the infant and the adult. As noted, the maximum magnitude of
the image in Fig. 5(b) is more than that in Fig. 5(c), meaning
that we are not able to base our classification on the signal
intensity. The signal intensity is affected by many factors, such
as RCS, distance to the radar, level of movement, relative
angle toward the radar, being concealed by a metallic part
of the car seats, and so on. To show the details, Fig. 6 shows
the 2-D raw radar images after performing the postprocessing
method for the case when an infant was in the rear middle
seat. To show more complex scenarios, Fig. 7(a) shows the

Fig. 6. Two-dimensional visualization of a normalized radar image
when seat 4 is occupied by an infant representation of (a) X-R samples,
(b) Y-R samples, and (c) X-Y samples.

car occupied by three passengers after applying the proposed
preprocessing method [seats 1 (an adult), 3 (a child), and 5
(a child)].

As seen, neither the classification of the type of occupants
nor counting their number/occupied seats is tractable based
on the RF images provided above. Even with the processed
images, passenger counting and classification is a complex
problem featuring nonlinear characteristics. The traditional
signal processing method requires multiple detection thresh-
olds to be tuned using a set of handcrafted rules. This approach
is time-consuming and would not be generalized well to
different car models. Thus, there is a pressing need for an
algorithm that can detect and classify passengers, count the
number of occupants, and identify occupied seats.

As such, we propose a deep learning-based model to count
the number of passengers and identify their occupied seats
inside a car.
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Fig. 7. Three-dimensional visualization of processed radar image
seats 1, 3, and 5 that are occupied. The color bar represents signal
intensity.

D. Proposed 2-D CNN-LSTM Architecture
Since traditional radar signal processing methods have

shown some limitations, particularly in matters of target
classification [56], we deployed machine learning in this
article. The diagram in Fig. 8 illustrates the processing flow
of our proposed in-cabin occupancy detection. As shown,
the aforementioned preprocessing method is applied to radar
received data to provide a 3-D heatmap of the car environment.
The heatmap is then delivered to deep learning models for
classification, counting, and detection.

Machine learning-based radar signal processing has been
explored in several studies, such as target detection [57], [58],
radar image processing and image denoising [59], automatic
target recognition [60], and activity recognition [42], [48].
These machine learning algorithms include traditional machine
learning (e.g., SVM, decision tree, and random forest) and
deep learning [e.g., deep belief networks, autoencoders, CNNs,
recurrent neural networks (RNNs), and generative adversarial
networks (GANs)]. The raw data are commonly converted
into a 2-D image while being treated as an optical image.
The corresponding architectures, such as 2-D convolutional
neural networks (2-D-CNNs), were used in these systems.
However, since a human body motion consists of a series of
associated postures through time and the radar heatmaps were
collected over successive periods of time (frames by frames),
they could be characterized as a time series. For this reason,
only CNNs are not a good algorithm for such time-varying
data. Given that we have time series data, it is natural to
consider using an RNN to keep track of the time series data
in terms of memories of what the system has observed so
far. In such cases, an appealing method is to use long short-
term memory (LSTM) model, an RNN architecture [61]. In the
LSTM model, the previous hidden state is passed to the next
step of the sequence [48].

Thus, the network uses a set of previously seen samples
to make a decision. Our basic approach is based on the idea
of LSTM, but since the purpose is to count passengers and
classify them, spatial information also plays a key role. A CNN
architecture was shown to be the best approach for extracting
spatial information. CNN models can learn patterns in a
hierarchical manner, and the learned patterns are translation

invariant [62]. Our proposed method for counting and clas-
sification is to apply the combination of LSTM with CNN
and deep neural networks (DNNs) [63] (cascaded networks).
Note that this approach is different from the regular LSTM
or CNN problem. It is a recurrent layer, but internal matrix
multiplications are replaced by convolution operations [62].

Consequently, the data flowing through the 2-D CNN-
LSTM cells keep the input dimension (3-D matrix in our
work) instead of being flattened as a 1-D vector with features.
Therefore, our architecture uses CNN to extract the 3-D spatial
features from the radar image, then passes them to LSTM
to perform temporal modeling, and finally outputs them to
DNN to produce separable feature representations. In other
words, we take advantage of the structure in the sequence
of 3-D representations of the radar reflections in the car
environment to learn valuable patterns from the heatmap data
(which is very difficult using 1-D CNN, LSTM, or DNN).

III. RESULTS

In this section, the results of various machine learning
and deep learning models are discussed. Data augmentation
methods, such as random translation and rotation [64], are
applied in both tasks leading to a significant increase in
accuracy. Standardization is chosen, which transforms data to
have a mean of 0 and a standard deviation of 1. It is worth
mentioning that our networks were implemented, trained,
validated, and tested in PyTorch in the CMC cloud server [65].
As shown in Fig. 9, N frames of range–azimuth–elevation
heatmaps (29 × 29 × 24) are the inputs to be fed to the
models. For our models, a wide range of N was used, and
N = 10 was found as an optimum number of frames. To count
the passengers and identify their occupied seats, and classify
them, we followed two approaches explained in Sections III-A
and III-B.

A. Counting and Localization
To monitor and count passengers in a five-seater car, each

seat is represented as a binary encoding (i.e., 1 if the seat
is occupied; 0 otherwise). Therefore, there are 32 scenarios
(i.e., 25 for five seats) that each index referring to a respective
seat number: 1 for an occupied seat (by living subject) and
0 for a nonoccupied seat). A prediction is considered correct
if and only if all five seats are correctly classified. We deploy
four models to be trained, namely, SVM, CNN, LSTM, and
2-D CNN-LSTM.

To find a proper model for our in-vehicle occupancy detec-
tion system, we first shuffled our data sets and split the
datasets to train, validate, and test sets as 70%, 20%, and 10%,
respectively. We started with the conventional SVM algorithm
(the same method used in [9]). However, the accuracy obtained
from SVM was 26%. The reason for this poor performance
was that the SVM algorithm was not able to handle large
datasets and extract features from flattened images. Then,
a CNN model was developed, which resulted in 99% accu-
racy. In order to validate and verify the CNN performance
and provide a generalized model for every five-seat car,
we deployed the CNN model for our session-independent
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Fig. 8. Proposed in-vehicle occupancy detection algorithm. Preprocessing is applied to radar received data to provide the heatmap. The heatmap
is then delivered to deep learning models to identify occupied seats and count the passengers.

Fig. 9. Time-dependent input for temporal deep learning models. The
input is a tensor of 29 × 29 × 24.

datasets. The CNN model results in a lower accuracy (67%)
because passengers were freely moving and doing different
types of activities, such as painting and talking with their
phones; their random movements caused the varying heatmaps.
Therefore, to overcome this issue and propose a model that
performs well in almost all scenarios and situations, we added
time as another variable. Hence, the results of all models are
shown in Fig. 10. As shown, the proposed 2-D CNN-LSTM
achieves 89% classification accuracy on the test set when cross
entropy is used as the loss function, while the LSTM is 10%
less accurate.

This finding implies that our model learns the underlying
mathematical correlation between radar signal and passenger
arrangement in the car. This is because 2-D CNN-LSTM
is based on spatial and temporal features of our datasets,
while CNN and LSTM alone are based on only spatial and
temporal features, respectively. Comparing LSTM with CNN,
the importance of adding extra information as time in radar
datasets is noticeable.

To provide more details of each scenario, a confusion
matrix of passenger monitoring and counting is shown in

Fig. 10. Accuracy obtained from CNN, LSTM, and 2-D CNN-LSTM.

Fig. 11. Confusion matrix of passenger counting and localization. Pred:
predicted classes.

Fig. 11. As seen, the model detects if a person is present
in the car with a precision = 100% and recall = 99.6%,
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Fig. 12. Clustering plot of the last layer before classifying the test dataset. The color bar represents the ground-truth class. GT is the ground-truth
label.

meaning that the probability of missing a passenger inside
a car and identify an occupied as a vacant is 0.4%. For
example, case 2 [01000] (when a passenger was sitting on
seat 2) is misclassified as class 0 [00000] (empty or missed
detection). There are some other mispredictions, such as
case 8 [10010], misclassified as case 4 [10] or case 28
[11011], and misclassified as case 24 [01011]. In contrast
with the “black-box” concept in machine learning, we aim to
explain how the model arrives at a specific decision. As each
test sample passes through the model, the last hidden layer
(i.e., a 512-dimension vector) is extracted and visualized
in Fig. 12 after dimensionality reduction via t-distributed
stochastic neighbor embedding (t-SNE) [66]. Samples form
clusters, and each cluster is associated with a predominant
label. In the output layer, the model uses those clusters to
assign each sample to a label.

B. Occupant Type
Occupant-type classification is a more challenging task

because the model must distinguish between adults and chil-
dren. For occupancy type, we performed two different methods
of analysis: 1) to identify a child/infant inside a car and 2) to
distinguish a child/infant from an adult. For the first one, the
datasets compose all scenarios of vacant cars (coded as 0) in
addition to the cases when children/infants were present in
the car (coded as 1). The confusion matrix is constructed
in Fig. 13 to summarize the performance of the model in
identifying a child occupant. The “Child” class is of particular
interest—a desirable in-car safety sensor should alarm the
caregiver when a child is left in an unattended vehicle. Our
model shows high precision (0.90) and recall (0.95) when used
to detect unattended children in vehicles.

For the latter one, each seat has three possible scenar-
ios (“empty,” “adult,” and “child”). The performance of the
proposed 2-D CNN-LSTM model for passenger classification
loss function and accuracy is plotted in Fig. 14(a) and (b),
respectively. The accuracy of the training set is around 90%
(the blue curve), and the validation set is 76% accurate (the
brown curve). These results are obtained after hyperparameter

Fig. 13. Test confusion matrix of occupant types.

Fig. 14. Performance of the proposed 2-D CNN-LSTM model for
passenger classification (a) loss function and (b) accuracy.

tuning. The model was 74% accurate in testing new scenarios
in a new car. Based on our criteria, if the occupant type is mis-
classified at any seat, the output was considered misclassified
for the entire sample.

Comparing the accuracy obtained for passenger counting
with classification, it is noticed that we can count the number
of passengers more accurately. We assume that one of the
major reasons is that all infants and children of different ages
are considered “child” classes. However, apparently, the size
and shape of an infant lying on a rear seat (all seat types
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were defined in [32]) are different from an older child sitting
on a booster seat. The reason why we regarded all of them
as “child” was the lack of enough datasets for children and
infants to cover a wide range of ages. Collecting sufficient
data from children and infants at different ages inside a car
was challenging over a long period of time, especially during
the COVID-19 restrictions.

IV. DISCUSSION

Our findings suggest that RF-based continuous passenger
monitoring within a vehicle is feasible and has the potential
to improve passenger safety. The proposed monitoring system
operates noninvasively, analyzing reflections of radio signals
to record the presence or absence of a passenger, identify
the type of passengers (adults versus kids), count them,
and identify their occupied seats (location). This informa-
tion can be transmitted to a guardian (e.g., parents) upon
triggering events, particularly when a child is left in an
unattended vehicle. This has significant implications, partic-
ularly in the context of the requirement of child presence
detection in Europe and a rear occupant alert system in the
USA.

The results obtained in this article show a prodigious role
for machine learning to play in in-vehicle sensors, not only
as an essential component of passenger detection but also
as safety precautions such as unattended children alarms.
Deep learning-based algorithms were deployed to a new radar
research domain to tackle traditional and new challenges from
a novel perspective. It was shown that a 3-D RF image of
an in-vehicle environment is sufficient information for deep
learning models. Applying the proposed preprocessing to raw
radar images, direct reflections from transmitters to receivers
and reflections from stationary clutter were removed. The
remaining signals, represented as a 3-D RF image, contain
information on the intensity and velocity of reflected signals
in range and angles at each voxel. Since the possible options
of seat configuration in a five-seater car are limited to 32,
supervised machine learning was trained to predict these
limited scenarios. Based on the preprocessing method applied
to the RF raw images and given that all passengers cannot
move/walk to change their position, it is assumed that the
effect of the vehicle environment was removed. This was
validated by capturing data from different cars to ensure the
generality of this model.

There are several limitations to this study. First, all experi-
ments were conducted in five-seater cars with the same config-
uration. However, the deep learning model might be unable to
predict new scenarios in a different seat configuration. Second,
impacts of potential obstructions by chairs or people were not
addressed, especially for a car with a third row. Finally, the
detrimental effects of noise (especially thermal noise) were
not explored. Due to the in-vehicle confined environment
surrounded by metallic objects, the radar sensor might be
influenced by varying noise levels.

Despite the aforementioned limitations, we believe that this
research provides important insights and addresses key unmet
needs in in-vehicle occupancy domains.

V. CONCLUSION

In this article, an in-cabin monitoring and radar-based
perception system for increased safety inside the vehicle is
reported. It was shown that the AI-powered radar-based system
is a promising technology for occupancy detection, counting,
and classification using a 4-D radar imaging system. In addi-
tion, a derivative-based method of passive clutter removal
also is used to remove clutter and mitigate leakage between
transmitters and receivers. The performance of different deep
learning models is analyzed for in-vehicle occupancy moni-
toring. It is shown that both temporal and spatial features of
the car environment play crucial parts. It is demonstrated that
the 2-D CNN-LSTM model performs best in predicting new
scenarios based on the session-independent datasets as it uses
both feature extraction methods from the CNN and temporal
features from the LSTM. Consequently, it was demonstrated
that a 4-D radar could be used to monitor both the front and
rear seat passengers at the same time.
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