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● Image compression is crucial as images continue to 
increase in number due to advancements in computing 
power and mobile camera capabilities. 

● To save space and transfer images more quickly, it is 
necessary to reduce the size of digital images while 
maintaining their necessary information. Deep Neural 
Networks (DNNs) have become powerful tools and are an 
avenue to explore. 

● However, DNNs are computationally intensive, requiring 
acceleration techniques to meet increasing needs. These 
techniques can be categorized into three categories: model 
compression, computational optimization, and dataflow 
optimization. 

● This project focuses on model compression techniques 
due to the high cost of transferring data and 
computation between different units.

Image compression algorithms aim to reduce the amount of 
data required to be stored while preserving a high quality of 
the image. In recent years, deep learning-based approaches to 
image compression have shown significant improvements 
over traditional methods. 

However, it is well-known that these deep learning models 
are often computationally expensive and memory-intensive, 
making them impractical for use in resource-constrained 
environments such as mobile devices and embedded systems. 

Model compression techniques can be used to reduce the size 
of the models, making them more suitable for deployment on 
such devices. We aim to explore a variety of model 
compression techniques to deep learning-based image 
compression algorithms. By compressing the model, we can 
reduce its memory and computational requirements while still 
maintaining a decent image quality. This can lead to faster 
inference times, reduced energy consumption, and overall 
improved efficiency of image compression algorithms.

Generating the baseline
● Load the checkpoints of the HiFiC [1] and the RNN-based compression 

algorithm [4], with target bitrate 0.30 and 0.375, respectively.
● Use the KODAK dataset [6] to test model performance and generate the 

Structural Similarity Index (SSIM) [7] as performance metrics. Total inference 
time and average compressed image size are also recorded.

Applying model compression techniques
● Model pruning: prune some connections within the network to boost robustness.
● Quantization: use a reduced precision integer representation for the weights 

and/or activations.
● Generate performance metrics and compare with the baseline performance.

● High Fidelity Compression (HiFiC) [1] achieved SOTA generative lossy 
compression results with conditional GANs [2] and a loss function that combines 
MSE with LPIPS [3], which measures the "perceptual distortion". 

● Toderici et al proposed a RNN architecture consisting of a RNN-based encoder 
and decoder, binarizer and a neural network for entropy coding [4]. The 
architecture allows for the gradual improvement and refinement of the output 
image as more data is received from the network. 

● Tantawy et al. [5] summarized three techniques for model compression: pruning, 
knowledge distillation, and lowering numeric precision.

● Novelty: We investigate the trade-off between size and latency reduction, and 
image quality on deep learning-based image compression approaches and extend 
previous research on model compression on a variety of image compression 
models by benchmarking the SOTA model compression approaches. 

Pruning:
● For the RNN-based model, the pruning was done on the convolution 

layers. Different ratios were applied for different portions of the 
model (encoder, decoder). The pruning did not reduce total inference 
time and no difference in performance was observed. 

● For the HiFiC algorithm, the pruning was done on both convolution 
layers and transpose convolution layers. The inference time was 
slightly reduced. The model’s performance was worse when pruning 
was done on the encoder. 

● The RNN-based model had a longer inference time. 

Encoder pruning 
ratio

Generator 
pruning ratio

Probability model 
pruning ratio Total inference time SSIM

Avg. compressed image size 
(B)

0 0 0 00:01:45 0.8179 18850.333
0.3 0 0 00:01:43 0.817 19048.167
0 0.3 0 00:01:40 0.7145 18850.333
0 0 0.3 00:01:40 0.8171 19192
0 0.3 0.3 00:01:40 0.7142 19048.167

0.3 0.3 0 00:01:41 0.7145 19048.167
0 0.3 0.3 00:01:40 0.7142 19192

0.3 0 0.3 00:01:42 0.8164 19429.5
0.3 0.3 0.3 00:01:37 0.7139 19429.5
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Figure 1: HiFiC architecture. 
The network consists of an 
convolution-based encoder E, 
generator G, a probability 
model P for modeling posterior 
probability, and discriminator D 
for adversarial training.  

Figure 2: RNN-based 
architecture. The network 
consists of a RNN-based 
encoder and decoder, binarizer 
and entropy coding.

Quantization:
● For the RNN-based model, as the model size decreases, the range of 

values is compressed resulting in loss of important information, which 
leads to inaccurate outputs. Higher precision for quantization might 
improve the accuracy but is currently not implemented in PyTorch.

● Quantization can not be applied on the HiFiC model as it is not 
implemented for transpose convolution layers.

Encoder pruning ratio Decoder pruning ratio Total inference time SSIM Avg. compressed image size (B)

0 0 00:17:36 0.7886 17545.666

0.3 0 00:17:35 0.7858 17439.416

0 0.3 00:17:36 0.7876 17545.666

0.3 0.3 00:17:36 0.785 17439.416

Table 1: Performance of the RNN based model with pruning.

Table 2: Performance of  HiFiC model with pruning.


