
Exploring Model Compression Techniques for Deep Learning based Image Compression Models
Jenny Yu, Rui Zhu, Parinita Edke

Executive Summary

References

Problem

Related Work Results and Discussion

Approach

● Image compression is crucial as images continue to
increase in number due to advancements in computing
power and mobile camera capabilities.

● To save space and transfer images more quickly, it is
necessary to reduce the size of digital images while
maintaining their necessary information. Deep Neural
Networks (DNNs) have become powerful tools and are an
avenue to explore.

● However, DNNs are computationally intensive, requiring
acceleration techniques to meet increasing needs. These
techniques can be categorized into three categories: model
compression, computational optimization, and dataflow
optimization.

● This project focuses on model compression techniques
due to the high cost of transferring data and
computation between different units.

Image compression algorithms aim to reduce the amount of
data required to be stored while preserving a high quality of
the image. In recent years, deep learning-based approaches to
image compression have shown significant improvements
over traditional methods.

However, it is well-known that these deep learning models
are often computationally expensive and memory-intensive,
making them impractical for use in resource-constrained
environments such as mobile devices and embedded systems.

Model compression techniques can be used to reduce the size
of the models, making them more suitable for deployment on
such devices. We aim to explore a variety of model
compression techniques to deep learning-based image
compression algorithms. By compressing the model, we can
reduce its memory and computational requirements while still
maintaining a decent image quality. This can lead to faster
inference times, reduced energy consumption, and overall
improved efficiency of image compression algorithms.

Generating the baseline
● Load the checkpoints of the HiFiC [1] and the RNN-based compression

algorithm [4], with target bitrate 0.30 and 0.375, respectively.
● Use the KODAK dataset [6] to test model performance and generate the

Structural Similarity Index (SSIM) [7] as performance metrics. Total inference
time and average compressed image size are also recorded.

Applying model compression techniques
● Model pruning: prune some connections within the network to boost robustness.
● Quantization: use a reduced precision integer representation for the weights

and/or activations.
● Generate performance metrics and compare with the baseline performance.

● High Fidelity Compression (HiFiC) [1] achieved SOTA generative lossy
compression results with conditional GANs [2] and a loss function that combines
MSE with LPIPS [3], which measures the "perceptual distortion".

● Toderici et al proposed a RNN architecture consisting of a RNN-based encoder
and decoder, binarizer and a neural network for entropy coding [4]. The
architecture allows for the gradual improvement and refinement of the output
image as more data is received from the network.

● Tantawy et al. [5] summarized three techniques for model compression: pruning,
knowledge distillation, and lowering numeric precision.

● Novelty: We investigate the trade-off between size and latency reduction, and
image quality on deep learning-based image compression approaches and extend
previous research on model compression on a variety of image compression
models by benchmarking the SOTA model compression approaches.

Pruning:
● For the RNN-based model, the pruning was done on the convolution

layers. Different ratios were applied for different portions of the
model (encoder, decoder). The pruning did not reduce total inference
time and no difference in performance was observed.

● For the HiFiC algorithm, the pruning was done on both convolution
layers and transpose convolution layers. The inference time was
slightly reduced. The model’s performance was worse when pruning
was done on the encoder.

● The RNN-based model had a longer inference time.

Encoder pruning
ratio

Generator
pruning ratio

Probability model
pruning ratio Total inference time SSIM

Avg. compressed image size
(B)

0 0 0 00:01:45 0.8179 18850.333
0.3 0 0 00:01:43 0.817 19048.167
0 0.3 0 00:01:40 0.7145 18850.333
0 0 0.3 00:01:40 0.8171 19192
0 0.3 0.3 00:01:40 0.7142 19048.167

0.3 0.3 0 00:01:41 0.7145 19048.167
0 0.3 0.3 00:01:40 0.7142 19192

0.3 0 0.3 00:01:42 0.8164 19429.5
0.3 0.3 0.3 00:01:37 0.7139 19429.5

[1] F. Mentzer, G. Toderici, M. Tschannen, and E. Agustsson, “High-fidelity generative image
compression,” 2020.
[2] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu et al., “Generative adversarial networks,”
Communications of the ACM, vol. 63, pp. 139–144, 6 2014.
[3] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable effectiveness of
deep features as a perceptual metric,” Proceedings of the IEEE Computer Society CVPR, pp. 586–595, 1
2018.
[4] G. Toderici, D. Vincent, N. Johnston, S. J. Hwang, D. Minnen, J. Shor, and M. Covell, “Full
resolution image compression with recurrent neural networks,” 2016.
[5] D. Tantawy, M. Zahran, and A. Wassal, “A survey on gan acceleration using memory compression
technique,” 2021.
[6] E. Kodak, “Kodak PhotoCD dataset.”
[7] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multi-scale structural similarity for image quality
assessment,” Conference Record of the Asilomar Conference on Signals, Systems and Computers, vol. 2,
pp. 1398–1402, 2003.

Figure 1: HiFiC architecture.
The network consists of an
convolution-based encoder E,
generator G, a probability
model P for modeling posterior
probability, and discriminator D
for adversarial training.

Figure 2: RNN-based
architecture. The network
consists of a RNN-based
encoder and decoder, binarizer
and entropy coding.

Quantization:
● For the RNN-based model, as the model size decreases, the range of

values is compressed resulting in loss of important information, which
leads to inaccurate outputs. Higher precision for quantization might
improve the accuracy but is currently not implemented in PyTorch.

● Quantization can not be applied on the HiFiC model as it is not
implemented for transpose convolution layers.

Encoder pruning ratio Decoder pruning ratio Total inference time SSIM Avg. compressed image size (B)

0 0 00:17:36 0.7886 17545.666

0.3 0 00:17:35 0.7858 17439.416

0 0.3 00:17:36 0.7876 17545.666

0.3 0.3 00:17:36 0.785 17439.416

Table 1: Performance of the RNN based model with pruning.

Table 2: Performance of HiFiC model with pruning.

